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The nematode Caenorhabditis elegans possesses a wealth of

opportunities to explore mechanisms which regulate metazoan

complexity, basic cellular biology, and neuronal system

attributes. Together, these provide a basis for tenable

understanding of neurodegenerative disorders such as

Parkinson disease (PD) through functional genomic analysis

and pharmacological manipulation for the discovery of

previously unknown genetic and environmental risk factors.

The application of C. elegans has proven prescient in terms of

the elucidation of functional effectors of cellular mechanisms

underlying PD that translate to mammals. The current state of

PD research using C. elegans encompasses defining obscure

combinatorial interactions between genes or between genes

and the environment, and continues to provide opportunities

for the discovery of new therapeutic targets and disease-

modifying drugs.
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Introduction
Some 200 years after primary characterization by James

Parkinson, his namesake disease remains the subject of

widespread academic and medical interest. Classically,

PD associates with progressive cell death of the selec-

tively vulnerable dopaminergic neurons of the midbrain

resulting in permanent impairment of motor control [1].

This neurodegeneration associates with seemingly dispa-

rate cellular dysfunctions including accumulation of reac-

tive nucleophiles, alterations of dopamine chemistry,

abnormal vesicular trafficking, and disrupted protein

homeostasis [2,3]. Despite mechanistic advancements,

the full etiology of this disorder remains elusive, due in

part to deficiencies in our understanding of molecular and
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cellular sensitizing risk factors. Further, because PD

associates with aging, and its concomitant societal burden,

innovative strategies to address all aspects of potential PD

pathology are essential. To address this urgent need, PD

research in non-human models has attempted to replicate

many determinants of PD pathology through which dis-

covery of genetic or pharmacological interactions can be

discerned in a tenable manner and accelerate the transla-

tional path to humans.

C. elegans as a cell biology and
pharmacogenetics disease model
Pioneered as a model system by Sydney Brenner in the

1970s to explore the genetic basis for neuromuscular

activity [4], C. elegans has proven an invaluable system

to reveal, and at times revolutionize, the understanding of

genomics, cell biology, cell death, epigenetics and aging

[5,6]. Further, this 959-cell nematode, with a nervous

system comprised of only 302 total neurons, possesses the

most well characterized cell lineage and neuronal con-

nectivity of any animal and currently provides a frame-

work for study of the mammalian brain [7]. Notably, as it

has a dopaminergic circuitry of just 8 anatomically-

defined neurons, the capacity to exploit C. elegans for

PD research allows for unparalleled accuracy in quantifi-

cation of neurodegeneration influenced by both intrinsic

and extrinsic stressors. Furthermore, the manner in which

stressors integrate innate genetics with environmental

exposure is of great interest, and C. elegans offers impor-

tant insights and opportunities at this intersection in the

context of PD.

Modeling genetic determinants of PD-like
phenotypes in C. elegans
In humans, genetic risk factors for PD have been linked to

genetic loci termed PARK for which at least 21 putative

sites have been identified, with the prospect of additional

risk loci also being identified [8]. Of these, only a few

have been conclusively linked to familial, monogenic

PD. These comprise the inherently disordered protein

a-synuclein, the vesicular trafficking protein VPS35, the

multidomain kinase LRRK2, and the mitochondrial

stress response proteins PINK1, Parkin, and DJ-1. The

C. elegans genome encodes genetic homologues to most of

these risk factors (Table 1), with the notable exception of

a-synuclein. However, since mutation or multiplication

of the a-synuclein locus is a known cause of PD [9,10],

it follows that transgenic overexpression of human

a-synuclein has not at all hindered the utility of C. elegans
to reveal critical mechanistic insights into PD. These
www.sciencedirect.com
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Table 1

Summary of PARK genes and corresponding C. elegans orthologs

Locus Human gene Function C. elegans gene Homology (e value)

PARK1 SNCA (a-synuclein) Unknown – –

PARK2 Parkin E3 ligase; mitophagy; others pdr-1 1.00E-34

PARK3 Unknown; possibly sepiapterin

reductase (SPR)

Biopterin biosynthesis in DA

metabolism

dhs-21 6.00E-09

PARK4 Regulatory elements of SCNA Unknown – –

PARK5 UCHL1 Hydrolysis of C-terminal ubiquitinyl

esters; aging and cellular

senescence

ubh-1, ubh-2, and/or ubh-3

(together in the CEOP5120

operon)

2.00E-29

PARK6 PINK1 Serine threonine kinase; mitophagy pink-1 1.00E-55

PARK7 DJ-1 Deglycase; chaperone-like function

during oxidative stress

djr-1.1 and djr-1.2 2.00E-46

PARK8 LRRK2 Multidomain serine/threonine

kinase; intracellular signaling but

largely unknown

lrk-1 2.00E-45

PARK9 ATP32 Lysosomal-associated cation

transporter and ATPase

catp-6 1.00E-118

PARK10 Unknown; likely not one gene, but

multiple genetic susceptibility

factors

– – –

PARK11 Unknown; debate centers around

GIFYF2

PolyQ protein associated with

receptor tyrosine kinases

Uncharacterized protein

C18H9.3

3.00E-07

PARK12 Unknown; X-linked – – –

PARK13 Potentially HtrA2 Mitochondrial serine protease – –

PARK14 PLA2G6 Calcium independent 2A

phospholipase; phospholipid

remodeling

Likely a member of the ipla

family of proteins (ipla-2)

2.00E-67

PARK15 Possibly FBX07 F-box protein; phosphorylation

dependent ubiquitination

– –

PARK16 Unknown – – –

PARK17 VPS35 Vesicular trafficking and retromer

sorting

vps-35 <1E-120

PARK18 E1F4G1 Translation initiation factor ifg-1 1.00E-23

PARK19 DNAJC6 Heat shock protein; molecular

chaperone

dnj-25 7.00E-31

PARK20 SYNJ1 Phosphoinositide phosphatase;

synaptic transmission and

membrane trafficking

unc-26 <1E-120

PARK21 DNAJC13 Heat shock protein; molecular

chaperone

rme-8 <1E-120
include the initial discovery of multiple conserved dis-

ease-modifying genes, as well as small molecules for

which results uncovered using worms successfully trans-

lated to rodent models, as well as human genome-wide

association studies and iPSCs derived from PD patients

[11–14].

Several different types of a-synuclein overexpression

experiments have been developed for both functional

and descriptive characterization in various cellular com-

partments of C. elegans (Figure 1). For instance, expres-

sion of a-synuclein in the C. elegans dopaminergic neurons

induces progressive, time-dependent neurodegeneration

and motor defects [15]. In addition to neuronal expres-

sion, a-synuclein misfolding can be monitored within

bodywall muscle cells as translational fusion GFP inclu-

sions. These strains have been studied in large scale

RNAi screens for enhancers of a-synuclein misfolding
www.sciencedirect.com 
alone [16] as well as in the context of strong misfolding

suppressors to contextualize proteostasis decline as sur-

mounting a predefined threshold [11]. In many cases,

a-synuclein aggregates and induces toxicity with age, a

crucial component of PD in humans. This age-dependent

toxicity is thought to arise due to generalized protein

homeostasis remodeling and eventual decline during

ageing [17]. Furthermore, modulation of the genetic basis

of ageing, by framing a-synuclein toxicity within muta-

tions in the worm insulin-like signaling pathway, has been

shown to attenuate neurodegeneration and observable

a-synuclein misfolding [12�,18�]. These screens have

expanded understanding of a-synuclein misfolding and

neurodegeneration, in part, as a consequence of impaired

vesicular and endosomal trafficking, endoplasmic reticu-

lum stress signaling, autophagy, and altered lipid homeo-

stasis [11,12�,16]. For example, one of these screens

uncovered a novel role for the protein VPS-41 in
Current Opinion in Genetics & Development 2017, 44:102–109
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Figure 1
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Application of C. elegans for research in PD-associated mechanisms. C. elegans is a microscopic, transparent nematode with a defined cell

lineage and neuroanatomy. Bioassays involving visual inspection of either the six anterior dopaminergic neurons and/or the bodywall muscle

(BWM) cells of this animal enables rapid quantifiable analysis of hallmark aspects of PD pathology such as neurodegeneration and protein

misfolding. (a) Cephalic dopaminergic neurons (6, arrows) can be studied natively in combination with mutations, drugs and/or with transgenic

overexpression of human PD-associated proteins such as a-synuclein (a-syn) or pathogenic LRRK2 variants. GFP transcriptional reporters

provide a stable system to visualize alterations in neuronal integrity and neuronal cell count, both being indicative of an underlying

neurodegenerative process. (b) The BWM comprise the largest and most easily visualized cells for the analysis of protein misfolding and

aggregation. Expression of a-syn-GFP in the BWM facilitates analysis of proteotoxic foci that increase or decrease in number and size due to

genetic or environmental factors. Numerous screens have been conducted in this cell type using RNAi to identify modulators of a-syn protein

homeostasis. These two distinct models can both be evaluated for temporal phenotypic changes. For instance, animals with a-syn expression in

dopaminergic neurons rarely show extensive degenerative phenotypes in the larval stages but accumulate degenerative phenotypes during

adulthood.
regulating a-synuclein toxicity [19]. This protein associ-

ates with the HOPS complex, important for lysosomal

fusion from the endosomal and trans-Golgi pathway. In

some respects, this is related to the known function of

the PD-related gene VPS35 (which has been recently

identified as interacting with another risk-factor in the

scaffolding protein EIF4G1 in yeast and C. elegans mod-

els [20]) that regulates the retrograde trafficking of

vesicles back to the trans-Golgi network and implicates

vesicular trafficking as a major regulator for attenuating

neuronal toxicity.
Current Opinion in Genetics & Development 2017, 44:102–109 
C. elegans disease homologues interact with each other in a

manner which may converge on a central inclusive path-

way, including those homologues of PINK1 ( pink-1),
LRRK2 (lrk-1), Parkin ( pdr-1), and DJ-1(dnaj-1.1 and

dnaj-1.2). For instance, loss-of-function to the gene pink-1
sensitizes animals to paraquat sensitivity and affects

neuronal outgrowth whereas loss-of-function to the

LRRK2 homologue lrk-1, in addition to affecting axonal

polarity, sensitizes animals to ER stressors. Combined,

these mutants can mask detrimental phenotypes associ-

ated with each other and appear to act antagonistically
www.sciencedirect.com
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Figure 2
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Gene-by-environment interactions potentiate C. elegans dopaminergic neurodegeneration. The cephalic dopaminergic neurons of C. elegans

provide an investigative platform for rapid quantification of either environmental or genetic causative factors for degenerative phenotypes. The

coordination of gene-by-environmental interactions is of interest, as the majority of cases of sporadic PD are idiopathic and could be influenced

through undefined factors from both the environment and innate genetics that sensitize individuals to PD. (a) Normal C. elegans rarely show

consistent and statistically significant degenerative phenotypes within dopaminergic neurons, even as animals reach old age (Day 10). Arrowheads

indicate intact dopaminergic neurons. (b) Addition of environmental susceptibility factors (in this case a bacterial metabolite from the soil

bacterium S. venezuelae) induces age-dependent accumulation of degenerative phenotypes (arrows). These can be visualized as either the loss of

neuron or loss of membrane integrity through neuronal swelling. Similar phenotypes can be observed using other chemicals, such as the ROS-

inducing drugs such as 6-OHDA, MPTP, rotenone and paraquat. (c) Genetic susceptibility factors (e.g., the overexpression of human a-syn) can

induce strong age-dependent neurodegeneration. (d) Coordination of both genetic and environmental exposures can be combined to evaluate

varied states of neurotoxicity that can be either additive or synergistic depending on dosage or age of animals. In this respect, environmental

exposures can be examined to uncover innate genetic susceptibility factors that otherwise would not produce toxic PD-like pathology if not for

surpassing a preexisting threshold state.
[21]. Further, LRRK2 overexpression per se induces neu-

rodegeneration phenotypes in C. elegans through overac-

tive kinase activity [22]. Considering LRRK2 mutations

in humans lead to dominant autosomal PD, there is a

likely relationship between the over activity of LRRK2

signaling and loss-of-function PINK1 genetic pathways.

In addition to this interaction, more attention is also being

payed to coordination of PINK1 and Parkin signaling

since the identification of both are crucial regulators of

mitochondrial autophagy (mitophagy) [23], which is

important for preventing accumulation of damaged

mitochondria [24]. In C. elegans these mutations affect

mitochondrial morphology, mitophagic potential, and

mitochondrial accumulation [25��,26]. However, Parkin

may have functions outside of interactions with PINK1.

For instance, Parkin and DJ-1 homologues in worms also

show genetic interactions in that loss-of-function states

show similar levels of sensitivity to mitochondrial com-

plex I stress [27]. How DJ-1 in C. elegans may contribute to

the increasingly appreciated role of PINK1 and Parkin

towards mitophagy still remains to be seen, although

some evidence from cell culture may indicate a parallel
www.sciencedirect.com 
role [28]. Collaborative studies conducted in both yeast

and worms recently reported that phospholipid content in

the mitochondrial membrane plays a role in modulating

a-synuclein neurotoxicity and can be attenuated using

select chemical modifiers [29�,30]. Moreover, as mutant

a-synuclein interacts with the mitochondrial import

protein, TOM20, the C. elegans system is well-poised to

explore the functional consequences of these dynamics

and their impact on stress response [31��].

How gene by environment factors influence
PD-like pathologies in C. elegans
Familial forms of PD are very rare and idiopathic forms,

where genetic determinants have not been linked pri-

marily to the progression of PD, are more common but

challenging to model. Because it is unlikely that all these

idiopathic forms represent spontaneous mutations or

an unknown genetic determinant, it stands to reason

that they are caused by environmental determinants or

combinatorial gene-by-environment (GxE) interactions

(Figure 2) [32]. For example, exposure to naturally

derived ROS-inducing biocides like rotenone or paraquat
Current Opinion in Genetics & Development 2017, 44:102–109
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Figure 3
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Alterations in C. elegans mitochondrial morphology in PD mutant

backgrounds. Phenotypic alterations in mitochondrial morphology are

an indication of mitochondrial turnover. (a) Mitochondrial

fragmentation in animals expressing a mitochondrial-targeted GFP

localized in body wall muscle cells following empty vector (EV) or pink-

1 or parkin ( pdr-1) RNAi knockdown by bacterial feeding.

Mitochondrial morphology is defined as normal (tubular—white box),

fused (elongated—blue box), or fragmented (circular and irregular—

yellow). (b) Quantitation of mitochondrial morphology phenotypes in C.

elegans populations. The distribution of fragmented mitochondria is

different between all samples. In pink-1 and parkin RNAi populations,

increased fragmentation is indicative of damaged mitochondria that

cannot be turned over by mitophagy.
have been correlatively linked to idiopathic PD [33].

Other environmental risk factors include transition metals

and other natural sources that impact neurotoxicity

[34,35]. C. elegans thereby provides a powerful system

whereby potential environmental risk factors can be

incorporated with genetics to observe and quantify func-

tional effectors of PD-like phenotypes.

One widely used pharmacological model in C. elegans is 6-

hydroxydopamine (6-OHDA) which is recognized by the

dopamine reuptake transporter and induces selective

dopaminergic neurodegeneration manifesting as a char-

acteristic blebbing of processes, swelling of neuronal cell

bodies and eventual disintegration in a non-apoptotic (or

at least not canonically apoptotic) fashion [36]. Dopamine

itself is also intrinsically reactive, as overexpression of its

rate limiting biosynthetic enzyme tyrosine hydroxylase

(TH) induces neurodegeneration but the mechanism of

toxicity related to 6-OHDA and TH overexpression may

differ [37]. Numerous factors have been identified which

regulate 6-OHDA toxicity in C. elegans, including dopa-

mine receptor modulation, autophagy inactivation, and

ER chaperone function [38,39]. 6-OHDA also induces

mitochondria disruption [40], potentially linking 6-

OHDA toxicity to other mitochondrial electron transport

chain disruptors and generalized ROS producers in the

sensitization of C. elegans to cell death. Likewise, MPTP,

rotenone, and paraquat have been used to model neuro-

degeneration for high throughput drug screens to identify

modulators of cellular death [41,42]. Interestingly, we

have discovered that bacterial metabolites can stress

mitochondria quality control, induce ROS accumulation

and elicit neurodegeneration [43,44].

The coordination of external stressors in GxE interactions

is increasingly being appreciated. For instance, toxicity in

C. elegans models of manganese toxicity is altered in the

context of mitochondrial associated PD mutant homo-

logues which sensitize animals in numerous ways, includ-

ing lifespan reduction and dopaminergic signaling [45–

47]. Interestingly, a-synuclein may act in ways that are

not strictly toxic as defects and oxidative stress observed

during manganese treatment can be attenuated by

a-synuclein [46]. GxE interactions may proceed in part

through alterations of innate redox homeostasis. For

instance, we have reported that a toxic bacterial metabo-

lite can potentiate a-synuclein stress by depressing glu-

tathione homeostasis, resulting in increased pink-1-
dependent autophagy [48]. Others have found that stres-

sing the glutathione pathway post-translational modifica-

tion system also interacts with known genetic modifiers

such as LRRK-2 overexpression and TH overexpression

[49]. In addition to environmentally-derived stress, some

newer studies have focused on potential amelioration of

neurodegenerative phenotypes (elicited primarily by

a-synuclein) by naturally derived substances. For

instance, fractionation extracts from a high flavonoid
Current Opinion in Genetics & Development 2017, 44:102–109 
tropical fruit have shown putative neuroprotective mole-

cules and lifespan modulation [50] as well as n-butylide-
nephthalide derived from the East-Asian herb Angelica
sinensis [51]. Thus, both naturally-derived toxins and

protective factors may interact with innate genetic pre-

dispositions to alter disease course.
www.sciencedirect.com
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Future directions and conclusions
Energy utilization is an important aspect of cellular health

and function that changes as organisms age. Insights from

both PD genetics and environmental studies have linked

ageing to the progression of PD and the decline of protein

homeostasis including mitochondrial quality control

[17,18�]. Failures of this pathway modulate PD-like

pathologies at the genetic, environmental, and GxE

levels. One such pathway, mitophagy is being investi-

gated as critical for cellular health and organismal lon-

gevity. At the molecular level, mitophagy entails recruit-

ment of the generic autophagy machinery that is adapted

for engulfment of a large organelle [23,24,25��]. How

mitochondrial-specific targeting for autophagy works is

only partially characterized, and largely limited to study

of PINK1 and Parkin. Furthermore, the mechanisms

required for autophagic destruction of mitochondria are

even less characterized. This type of investigative problem

iswell suitedfor study inC. elegans throughboth forward and

reverse screens in conjunction with reporter strains to

measure and observe mitophagic clearance (Figure 3).

For instance, colocalization of the lgg-1 autophagy gene

(homolog of human LC3) with mitochondrial GFP signals

can roughly approximate autophagy in C. elegans [25��].
However, tools for visualizing mitophagy remain limited.

Thus, future studies of mitophagy and mitochondrial qual-

ity control should expand on the collection of useful

reporter strains as well as increase genetic understanding

of GxE interactions through a mixture of pharmacology,

screening, and targeted genetic investigation.

Because energy utilization is, in many respects, influ-

enced by mitochondrial function it is likely that mito-

chondrial function, ageing, and energy utilization form a

major axis of disease progression. This is especially true of

energetically demanding compartments such as neurons

where glycolysis is inestimable to neuronal function dur-

ing stress events [52�] and where alteration of glycolytic

potential through changes to insulin signaling affect worm

neuronal health [12�,18�] as a function of age. Indeed,

insights into these axes in C. elegans have found that in

addition to genetic, pharmacological extension of ageing

through application of anti-ageing drugs slow the progres-

sion of toxic phenotypes by restoring and maintaining

lysosomal potential indicating a pivotal role for protein

clearance in preventing disease progression [53]. How-

ever, other forms of organismal life extension may not

correlate with increase in quality of life in what is termed

healthspan [54��] where, despite increase in lifespan,

organisms progressively accumulate old-age phenotypes.

In this regard, C. elegans is well-positioned to yield addi-

tional insights that advance our understanding and hasten

the therapeutic trajectory for PD.
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