Lysosomal Impairment in Parkinson’s Disease

Benjamin Dehay, PhD,1* Marta Martinez-Vicente, PhD,2 Guy A. Caldwell, PhD,3,4 Kim A. Caldwell, PhD,3,4 Zhenyue Yue, PhD,5 Mark R. Cookson, PhD,6 Christine Klein, PhD,7 Miquel Vila, MD,2,8,9 and Erwan Bezard, PhD1

1Institute of Neurodegenerative Diseases, University of Bordeaux Segalen, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Bordeaux, France
2Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, Barcelona, Spain
3Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
4Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA
5Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
6Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Health, Bethesda, Maryland, USA
7Institute of Neurogenetics, University of Lubeck, Lubeck, Germany
8Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
9Catalan Institution for Research and Advanced Studies, Barcelona, Spain

ABSTRACT: Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson’s disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation.

*Correspondence to: Dr. B. Dehay, CNRS UMR 5293, IMN, Université Bordeaux Segalen, 146 rue Léon Saignat, 33076 Bordeaux Cedex, France; benjamin.dehay@u-bordeaux2.fr

Funding Agencies: This work was supported by a Marie Curie Reintegration Grant from the European Commission (FP7-PEOPLE-2009-ERC256303; to B.D.); by a Fondation pour la Recherche Médicale grant (to B.D.); by Agence Nationale de la Recherche grants (ANR-08-MNP-018; ANR-07-MNP-Tra- Tinfild; to E.B.); by the Volkswagen Foundation, the Hermann and Lilly Schilling Foundation, and MEFOPA (FP7) (to C.K.); by Fondo de Investigación Sanitària-Instituto de Salud Carlos III, Spain (to M.V. and M.M.-V.); by Ministerio de Investigación, Desarrollo e Innovación, Spain (to M.M.-V.); and by US National Institutes of Health, National Institute of Neurological Disorders and Stroke grants (R01NS060123, NS060809, RNS055683) and the Michael J. Fox Foundation (to Z.Y.). This research was supported in part by the Intramural Research Program of the National Institutes of Health, National Institute on Aging (to M.R.C.) and by National Institutes of Health grant 1R15NS075684 (to G.A.C.).

Relevant conflicts of interest/financial disclosures: EB has equity stake in Motac holding Ltd. (Manchester, UK), receives consultancy payments from Motac Neuroscience Ltd. (Manchester, UK); has received grants from the Agence Nationale de la Recherche (France), the Michael J. Fox Foundation for Parkinson Research (USA), the European Commission and is a member of the scientific advisory board of the Michael J. Fox Foundation for Parkinson Research (USA) and of the France Parkinson association. CK is a member of the editorial board of “Neurology” and has served as editor of the “Continuum Issue Neurogenetics 2008” and as faculty at the Annual Meetings of the American Academy of Neurology since 2004. CK is a consultant to Centogene and received honoraria for speaking from Boehringer Ingelheim and Orion Pharma. CK is the recipient of a career development award from the Hermann and Lilly Schilling Foundation. CK is funded by the Volkswagen Foundation, the Deutsche Forschungsgemeinschaft, the Possehl Foundation and received institutional support from the University of Lubeck for genetics research. All other authors have nothing to report.

Full financial disclosures and author roles may be found in the online version of this article.

Received: 15 November 2012; Revised: 20 February 2013; Accepted: 11 March 2013

DOI: 10.1002/mds.25462
and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function. © 2013 Movement Disorder Society

Lysosomes are dynamic acidic organelles that contain hydrolytic enzymes capable of degrading intracellular components through several degradation pathways, including endocytosis, phagocytosis, and autophagy.1,2 (Fig. 1). Lysosomes are responsible for the clearance of long-lived proteins, such as aggregate-prone α-synuclein among others, and for the removal of old or damaged organelles, such as mitochondria. Both α-synuclein aggregation and mitochondrial dysfunction are considered major pathogenic events in Parkinson’s disease (PD).3–5 Increasing evidence indicates that impairment of lysosomal function may contribute to the pathogenesis of several neurodegenerative diseases, including PD.6 Here, we review recent data, mostly derived from genetic alterations in lysosomal-related genes, supporting a potential pathogenic role for lysosomal dysfunction in PD.

Dysregulation of the Autophagy-Lysosome System in PD

Neurons are particularly sensitive to alterations in protein degradation pathways. Constitutive autophagy is essential for neuronal survival, because its genetic inactivation selectively in neurons leads to the formation of ubiquitinated intracellular inclusions and cell loss in mutant mice.7–9 Implicating an impairment of lysosomal activity in PD, a reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins (cathepsin D, lysosomal-associated membrane protein 1 [LAMP-1], LAMP-2a, and heat shock cognate 71 kDa protein [Hsc70]) and accumulation of undegraded autophagosomes (APs) have been observed in postmortem brain samples from patients with idiopathic PD and toxin and genetic rodent models of PD.10–14 In addition, impaired lysosomal-mediated clearance of APs has been reported in cultured dopaminergic neurons generated from reprogrammed induced pluripotent stem cells (iPSCs) derived from skin fibroblasts of sporadic and genetic PD patients.15 Mechanistic studies in 1-methyl-4-phenyl-11.2.3.6-tetrahydropyridine (MPTP)-treated mice revealed that PD-linked lysosomal deficiency preceded cell death and was instrumental in the impairment of autophagy and in overall dopaminergic neurodegeneration.16 In these animals, pharmacologic reactivation of autophagy-lysosomal pathways (ALPs) with rapamycin resulted in an increased number of functional lysosomes, reversed AP accumulation, and attenuated dopaminergic cell death.13,17 Further demonstrating a deleterious role of impaired lysosomal/autophagic degradation in relation to PD, directed genetic deletion of an essential autophagy gene, autophagy related 7 (Atg7), within catecholaminergic neurons in mice resulted in decreased striatal dopamine; abnormal presynaptic neurotransmission; and age-dependent axonal morphologic alterations, motor deficits, and neurodegeneration.18–21 Remarkably, these animals also developed presynaptic α-synuclein accumulations, suggesting that macroautophagy may play a critical role in axons, whereas other degradative pathways (such as chaperone-mediated autophagy [CMA] or the ubiquitin-proteasome system [UPS]) may have a more prominent role in cell bodies. α-Synuclein is a major constituent of Lewy bodies (LBs) and Lewy neurites and is believed to play a significant pathogenic role in both familial and idiopathic forms of PD. Although it was originally thought that α-synuclein was exclusively degraded by the UPS, we now know that this protein can also be degraded inside lysosomes, through CMA, or through endocytosis22–27 (Fig. 2). The signals responsible for sending α-synuclein to either 1 or another degradation pathway are not yet fully understood, particularly in neurons, but depend on several factors intrinsic to the status of the protein, such as: (1) its folding state (unfolded, properly folded, or misfolded), (2) its localization (cytosolic, associated to membranes, or even extracellular), (3) the presence of post-translational modifications (unmodified, ubiquitinated, phosphorylated, nitrated, oxidized, or dopamine-modified), and (4) its oligomeric state (monomeric, oligomeric, protofibrillar, fibrillar, or aggregated).25,28 All these factors, together with possible interactions with different chaperones and co-chaperones, determine the degradation destiny of α-synuclein. Although macroautophagy is able to degrade different forms of α-synuclein, it has been recently reported that α-synuclein, in turn, can directly impair macroautophagy both in vitro and in vivo.29–31 Furthermore, PD-linked pathologic α-synuclein (ie, mutated, post-translationally modified, or oligomeric/aggregated) can directly impair UPS and lysosomal functions, resulting in defective clearance and subsequent accumulation of abnormal α-synuclein species.

Key Words: Parkinson’s disease; ATP13A2; glucocerebrosidase; lysosome; neurodegeneration; Lewy body
and other UPS/lysosomal substrates. Hence, α-synuclein accumulation in PD may represent both a cause and a consequence of impaired proteolytic activity in this disease. It is noteworthy that the lysosomal enzyme cathepsin-D, the most active protease in degradation of α-synuclein, is neuroprotective against α-synuclein–induced dopaminergic neurodegeneration in a Caenorhabditis elegans model, and genetic ablation of this enzyme in mutant mice leads to α-synuclein accumulation. In addition to α-synuclein, other PD-related genes recently have been linked to ALP alterations (Fig. 2). For instance, PD-linked mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with impaired autophagy by an as yet unknown mechanism. In addition, PD-linked mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin genes have been shown to disrupt the coordinated normal regulatory role of these molecules at promoting autophagic degradation of dysfunctional mitochondria, thereby leading to the deleterious consequences of defective mitophagy. Taken together, these observations strongly support the concept that the ALP may be impaired in PD.

Lysosomal-Related Genetic Alterations and PD

Although the above-reported data associate lysosomal insufficiency with PD, genetic analyses also indicate that lysosomal impairment may play a primary pathogenic role in this disease. In particular, mutations in 2 genes that encode lysosomal proteins, including the enzyme glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD—the former as an important risk factor for PD through a multicenter genetic analysis, and the latter through linkage in rare families with prominent parkinsonism. Recent data offer mechanistic molecular evidence for such a connection (Fig. 2).

1. GBA

Loss-of-function mutations in the gene encoding GBA cause Gaucher disease (GD), the most common
lysosomal storage disorder. GBA catalyzes the conversion of the glycolipid glucosylceramide into glucose and ceramide inside lysosomes. Conditional knock-out mice of GBA in the central nervous system develop neuronal loss associated with microgliosis, indicating a critical role of GBA in neuronal survival. Glucosylceramide levels are increased in the brains of these animals. Carrier status of a single mutant GBA allele is a significant risk factor for PD and for dementia with LBs. Conversely, patients with GD, although clinically different from PD, not infrequently exhibit parkinsonism, α-synuclein–immunoreactive LBs, and loss of melanized dopaminergic neurons. Intralysosomal accumulation of glucosylceramide has been proposed as the most likely pathogenic mechanism linked to GBA loss-of-function homozygous mutations. However, GBA mutations linked to an increased risk of PD are usually present only in the heterozygous state (ie, patients who carry 1 wild-type GBA allele and, thus, have at least 50% of normal enzyme function). In addition, it has been reported that GBA is a component of LBs.

Recent mechanistic studies indicate that GBA can influence α-synuclein processing through both gain-of-function and loss-of-function mechanisms. Loss of GBA activity in mouse primary cortical neurons and in human neurons derived from iPSCs from a patient with GD resulted in glucosylceramide accumulation, decreased lysosomal degradation, and subsequent accumulation of α-synuclein, promoting α-synuclein oligomer formation and neurotoxicity. α-Synuclein accumulations, in turn, impair the trafficking of GBA.
from the endoplasmic reticulum-Golgi to lysosomes, thereby resulting in further decreased lysosomal GBA activity.47 Thus, loss of GBA creates a positive feedback loop of reduced lysosomal function and α-synuclein accumulation that ultimately leads to neurodegeneration.48 In another study, overexpression of several GBA mutants in cultured cell lines did not alter GBA activity but also resulted in α-synuclein accumulations, which were reversed by inducing autophagy with rapamycin or by promoting GBA translocation into lysosomes with the GBA chaperone.

In Parkinson disease (PD), mitochondrial function is impaired, and several mitochondrial respiratory chain enzymes are altered, including complex I impairment, oxidative stress, and proteasomal stress, has been demonstrated.56 It is hypothesized that missense or truncation mutations in the ATP13A2 gene exert their pathogenic effect by causing loss of ATP13A2 function due to impaired targeting of ATP13A2 to lysosomes.39,57,58 Studies in KRS patient-derived fibroblasts and ATP13A2-deficient cell lines revealed a general lysosomal impairment characterized by instability of the lysosomal membrane, impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished lysosomal-mediated clearance of AP, all of which were associated with cell death. All these effects were rescued by restoring the expression of wild-type ATP13A2 in ATP13A2-depleted cells.59-61 In both ATP13A2-mutant or ATP13A2-defective cells, impaired lysosomal proteolysis resulted in a marked accumulation of α-synuclein.59,60 Silencing of endogenous α-synuclein attenuated toxicity in ATP13A2-depleted neurons.60 Conversely, cell death induced by ATP13A2 knockdown was greatly enhanced by α-synuclein overexpression.59 Relevant to PD, lentiviral vector-mediated ATP13A2 knockdown in primary mesencephalic dopaminergic neurons resulted in selective dopaminergic, but not GABAergic, neurodegeneration.55 In addition, ATP13A2 levels were decreased in postmortem PD nigral samples in which 90% of LBs exhibited a positive signal for ATP13A2 in their core and were surrounded by more peripherally located α-synuclein.59

Overall, these results indicate a pathogenic role of ATP13A2 deficiency in lysosomal function and cell viability. In addition, other studies have indicated that loss of ATP13A2 function may also induce mitochondrial defects, likely because of decreased mitochondrial turnover secondary to impaired mitophagy.62,63 ATP13A2 and some of its interacting partners have been identified as modifiers of α-synuclein toxicity in yeast 2-hybrid systems and RNA interference screens in worms64,65 and, thus, may represent potential therapeutic targets for the development of new strategies aimed at modulating ATP13A2-related pathways in PD.

Concluding Remarks and Future Directions

Increasing evidence indicates that impaired lysosomal function, which is essential to maintain proper protein and organelle quantity and quality within cells, may play an important role in the pathogenesis of PD. Lysosomal defects could potentially account not only for dopaminergic cell dysfunction/death but also for the presence of α-synuclein-containing LBs. The identification of AP/lysosomal markers as components of LBs in patients with sporadic PD, including LC3,13,14 LAMP-1,12 LAMP-2a,14 cathepsin-D,12 VPS35,66 GBA,46 and ATP13A2,59 raises the possibility that LBs, the origin and significance of which remain unknown, may seed around impaired lysosomes and/or undegraded APs and grow in size by the
continuous deposition of lysosomal/AP-derived, undegraded material as the disease progresses. Consistent with this, (1) LBs contain abnormal mitochondria, autophagy-related molecules, lysosomes, and vacuolar structures; (2) patients with GD can exhibit α-synuclein–immunoreactive LBs similar to those found in PD; (3) specific environments inside membranous and vesicular structures, such as a molecularly crowded milieu, are more prone to α-synuclein aggregation; and (4) ubiquitin, which has been identified as 1 of the main components of LBs, was originally associated with the proteasome degradation pathway, but we now know that ubiquitin is a tag that can also target intracellular components for its degradation by some forms of selective autophagy.

Although lysosomal impairment represents only 1 aspect of the many potential facets of PD pathogenesis, the results reviewed here raise the possibility that enhancement/removal of lysosomal-mediated degradation may prove beneficial for PD. It is important to note, however, that, based on the current results, strategies/drugs aimed at activating autophagy solely by increasing AP formation without concomitant increases in lysosomal function could result in further cellular damage, rather than benefit, in the context of PD. Instead, therapeutic modulation of autophagy in PD should be aimed at the late steps of the ALP (i.e., improving the efficiency of AP maturation and substrate digestion) by boosting AP maturation, fusion with lysosome, and lysosomal biogenesis, trafficking, and function. In this regard, autophagy induction with the mammalian target of rapamycin (mTOR)-inhibiting drug rapamycin or with mTOR-independent autophagy enhancers, such as lithium and trehalose, provide neuroprotection in several in vitro and in vivo genetic and toxic models of PD and have been shown to exert part of their proautophagy actions by enhancing lysosomal activation and AP clearance, and not solely by increasing new AP formation.

Similarly, viral-vector–mediated expression of autophagy regulators, such as beclin-1, has been shown to reduce α-synuclein accumulations and synaptic pathology in α-synuclein transgenic mice by enhancing autophagic activity. Overexpression of transcription factor EB (TFEB), a master activator of the ALP, also reportedly protects cultured cells against parkinsonian neurotoxins. Overall, these studies lay the groundwork for the potential development of novel therapeutic strategies aimed at restoring lysosomal-mediated degradation in PD.

References

